مر لئ وور (ق جسم صلب غير قابل

للتشويم حول محوير عابس

السلام حليلى ورحة الاله وبركاته

الأولى باكالوريا

الفيزياء جميع الشعب $\frac{1}{2}$ الصفحة

الجزء الأول: الشىغل الميكانيكي والطاقة الوحدة 1

G(t)

 G_{i+1}

 $G_0(t=0)$

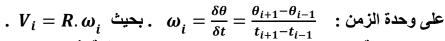
منحى الحركة

منحى الحركة

Mouvement de rotation d'un solide indéformable autour d'un axe fixe

* يكون جسم صلب غير قابل للتشويه في دوران حول محور ثابت ، إذا كانت كل نقطة من نقطه في حركة دائرية ممركزة على هذا المحور ومسار هذه النقطة المتحركة ينتمي إلى المستوى المتعامد مع محور الدوران.

بيمكن معلمة نقطة متحركة G من جسم صلب ، في معلم متعامد ممنظم $\mathcal{R}(O,\vec{a},\vec{j},\vec{k})$ مرتبط بالجسم المرجعي في *

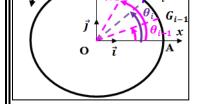

 $\overrightarrow{OG} = x. \overrightarrow{i} + y. \overrightarrow{j} + z. \overrightarrow{k}$: بحيث \overrightarrow{OG} بحيث الموضع

* نسمي الأفصول الزاوي للنقطة المتحركة G في لحظّة أ الزاوية

و هو مقدار جبري . $oldsymbol{ heta}(t) = (\overline{oldsymbol{ox}}, \overline{oldsymbol{oG}})$

* نسمى الأفصول المنحنى للنقطة المتحركة G في لحظة t طول القوس المحصور بين $s(t) = r.\, heta(t)$ و هو مقدار جبري . بحیث $s(t) = \widehat{AG}$ و A

السرعة الزاوية اللحظية ω هي خارج قسمة الزاوية التي تكسها متجهة الموضع ω



* تكون حركة الدوران لجسم صلب حول محور ثابت منتظمة إذا بقيت السرعة

. $\omega = \frac{\Delta \theta}{\Delta t} = Cte$. الزاوية ω لهذا الجسم ثابتة مع مرور الزمن ω

* الدور هو المدة الزمنية اللازمة لكي تنجز نقطة من جسم صلب في حركة دوران

 $T = \frac{2\pi}{\alpha}$ منتظم دورة كاملة .

 $f = rac{1}{T} = rac{\omega}{2\pi}$. التردد هو عدد الدورات التي تنجزها نقطة من جسم صلب في حركة دوران منتظم في الثانية

s(t)=V. المعادلة الزمنية لحركة نقطة من جسم في دوران منتظم هي ω $t=\omega$. $t=\omega$ أو

يُنجز محرك سيارة 5000 دورة في الدقيقة .

 $rad. s^{-1}$ احسب السرعة الزاوية للمحرك بالوحدة $rad. s^{-1}$

2- استنتج دور وتردد حركة دوران المحرك .

تمرین 2:

يُنجز قرص غير قابل للتشويه حركة دوران حول محور ثابت بسرعة ثابتة قيمتها 1800 دورة في الدقيقة .

 $rad. s^{-1}$ عبر عن السرعة الزاوية بالوحدة $rad. s^{-1}$

2- احسب السرعة الخطية لنقطتين M و N تبعدان عن

. $\mathbf{R_N=6cm}$ و $\mathbf{R_M=12cm}$.

 \vec{V}_{M} عتين ، بسلم مناسب ، في تبيانة متجهتي السر عتين 3

تمرین 3:

يدير محرك قرصا متجانسا شعاعه R=5cm بسرعة

1050 دورة في الدقيقة حول محور ثابت منطبق مع محور

 $rad. s^{-1}$ احسب السرعة الزاوية للقرص بالوحدة $rad. s^{-1}$ 2- استنتج دور وتردد حركة دوران القرص.

. احسب السرعة V_A لنقطة A من محيط القرص 3

4- احسب عدد الدورات التي ينجزها القرص خلال المدة الزمنية Δt =10 $_{
m S}$.

تمرین 4:

يدور قرص شعاعه R=20cm حول محور ثابت يمر من مركز قصوره في النظام الدائم يكون تردده f=100Hz .

احسب السرعة الزاوية لدوران القرص.

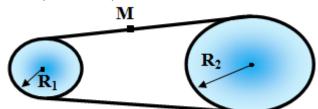
2- حدد قيمة السرعة الخطية لنقطة من محيط القرص.

3- احسب عدد الدورات n التي ينجز ها القرص خلال

المدة الز منية Δt=1min .

ام حلیلم ورعة الله وبرگاته

الأولى باكالوريا الفيزياء جميع الشعب $\frac{2}{1}$ الصفحة:


حر كة وور (ق جسم صلب غير قابل للتشويم حول محوير عابت Mouvement de rotation d'un solide indéformable autour d'un axe fixe

الميكانيكي والطاقة الوحدة 1 هشام محجر

الجزء الأول : الشغل

تمرين 5:

نعتبر بكرتين مرتبطتين بواسطة سير (Courroie) .

 $R_1=rac{R_2}{2}$ ميث $R_1=rac{R_2}{2}$ ميث و التوالي التو تدور البكرة ذات الشعاع \mathbf{R}_1 بسرعة زاوية ثابتة

 $\omega_1 = 180 rad. s^{-1}$

 $\frac{\omega_1}{\omega_2} = \frac{R_2}{R_1}$ بين أن -1

 \mathbf{R}_2 السرعة الزاوية للبكرة ذات الشعاع $\mathbf{\omega}_2$ - احسب $\mathbf{\omega}_2$

3- حدد سرعة النقطة M علما أن R₂=18cm

تمرین 6:

تنجز عقارب ساعة حائطية حركة دور انية منتظمة

1- حدد السرعات الزاوية لعقارب الساعة (عقرب الثواني

. (ω_3 عقرب الدقائق ω_2 ، عقرب الساعات ω_1

2- احسب سرعة الطرف M لعقرب الثواني علما أن

. $oldsymbol{l}=\mathbf{1},\mathbf{2}cm$ هي \mathbf{M} ومحور الدوران \mathbf{M}

3- نختار أصل التواريخ (t=0) عند الظهر (أي الساعة 12) ، حدد اللحظة التي ينطبق عندها من جديد و لأول مرة

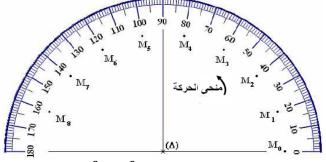
عقرب الدقائق وعقرب الساعات .

تنجز الأرض دورة كاملة خلال يوم فلكى T=86164s

السرعة الزاوية ω_T السرعة الزاوية للأرض في المرجع المركزي

2- احسب السرعة الخطية لنقطة توجد على خط الاستواء .

 $\lambda = 34^{\circ}$ توجد مدينة الرباط على خط العرض


3-1- عرف خط العرض لنقطة من سطح الأرض.

2-3- احسب السرعة الخطية لصومعة حسان في المرجع

 $R_T = 6378 km$: نعطى نعطى الأرضى

تمرين 8:

نعتبر قرصا متجانسا شعاعه R=0,3m في دوران حول محور رأسي (Δ) ثابت يمر من مركز قصوره G . يمثل الشكل أسفله تسجيل مواضع نقطة M من محيط القرص أثناء مدد زمنية متتالية ومتساوية au=20.

اتعيين $\boldsymbol{\omega_i} = \frac{\theta_{i+1} - \theta_{i-1}}{2 \tau}$ لتعيين التعمالك لطريقة التأطير السرعة الزاوية ω , في لحظة تاريخها t_i ، أوجد قيمة السرعة الزاوية للنقطة M في كل من المواضع M_2 و . M_6 و M_4

2- ما طبيعة حركة القرص ؟ علل جوابك .

وجد المعادلة الزمنية $\theta = f(t)$ لحركة M في الحالات

 M_0 التواريخ لحظة تسجيل الموضع M_0 وأصل الأفاصيل الزاوية عنّد مرور M بالموضع M_0 .

 M_0 التواريخ لحظة تسجيل الموضع -2وأصل الأفاصيل الزاوية عند مرور M بالموضع M_2 .

 M_2 التواريخ لحظة تسجيل الموضع 3وأصل الأفاصيل الزاوية عند مرور \mathbf{M} بالموضع \mathbf{M}_0 .

 M_2 الموضع التواريخ لحظة تسجيل الموضع 4-3

وأصل الأفاصيل الزاوية عند مرور M بالموضع M_4 .

4- نأخذ النقطة M_0 أصلا للأفاصيل ولحظ تسجيلها أصلا

4-1- اعط المعادلة الزمنية لحركة النقطة M باستعمال الأفصول المنحني .

2-4- احسب المدة الزمنية اللازمة لكي ينجز القرص خمس دورات كاملة.